Vapor-Phase Synthesis of Symmetric Ketone from Alcohol over CeO₂-Fe₂O₃ Catalysts

Yoichiro Kamimura, Satoshi Sato,* Ryoji Takahashi, Toshiaki Sodesawa, and Masahiro Fukui[†] Department of Materials Technology, Faculty of Engineering, Chiba University, Yayoi, Inage-ku, Chiba 263-8522

[†]Group Planning-Performance Products, Chisso Co., 2-7-3 Marunouchi, Chiyoda-ku, Tokyo 100-8333

(Received November 2, 1999; CL-990935)

Formation of 3-pentanone via oxidative dimerization of 1propanol was investigated over CeO_2 -based solid solution with various metal oxides. An addition of Fe_2O_3 into CeO_2 greatly enhanced the 3-pentanone formation, and both 1-propanol conversion and 3-pentanone selectivity were maximized at Fe content of 20 mol%. It was found that the CeO_2 -Fe₂O₃ effectively works as a catalyst for the formation of symmetric ketones such as 3-pentanone, 4-heptanone, 5-nonanone, etc.

 CeO_2 is an attractive catalyst for various reactions such as hydrogenation of CO^1 and alkylation of phenol.²⁻⁴ In the alkylation of phenol using 1-propanol, we found that 3-pentanone was observed as a by-product over CeO_2 -MgO solid solution catalyst, and that the yield of 3-pentanone increased with increasing CeO_2 content in the CeO_2 -MgO.⁴ We have speculated that the total reaction proceeds as follows: 1-propanol is dehydrogenated to propanal, followed by aldol addition to produce 3-hydroxy-2-methylpentanal, and finally it is decomposed to 3-pentanone.

In this work, we examine catalytic tests of 1-propanol conversion over CeO_2 -based solid solution with various metal oxides (MO_x), and discuss what in the catalyst essentially affects the 3-pentanone formation. Furthermore, we examine syntheses of symmetric ketones from the other alcohols.

All reagents were supplied by Wako Pure Chemical industries, Ltd. (Japan). CeO_2 -based solid solution (CeO_2 - MO_x) samples were prepared by using cerium (III) nitrate hexahydrate, another metal (M) nitrate, and citric acid monohydrate. The preparation procedure has been described elsewhere.³ After the citrate precursor had been heated in air at 170 °C for 2 h, it was calcined in air at 550 °C for 2 h to provide a CeO_2 - MO_x sample. The content of MO_x was defined as a mol percent of metal ion.

The reaction of 1-propanol was carried out in a usual fixed bed flow reactor under atmospheric pressure of N_2 at 450 °C. Prior to the reaction, a catalyst sample (0.15 g) was preheated in a glass tube reactor at 500 °C for 1 h. 1-Propanol was fed into the reactor at 450 °C at the rate of 23 mmol h⁻¹, together with N_2 flow of 73 mmol h⁻¹. An effluent collected in an ice trap was extracted every an hour, and analyzed by FID-GC with a packed column of Silicon OV-17 (2 m) at temperatures controlled from 50 to 220 °C at a heating rate of 5 K min⁻¹. Gaseous hydrocarbons such as propane and propene were analyzed by FID-GC with a packed column of either PEG-HT (1 m) or VZ-7 (6 m) at a constant temperature of 40 °C. The catalytic activities are estimated by the average conversion of 1propanol for 5 h. Most of catalysts tested showed stable activities and/or an inductive period for the initial 3h.

Table 1 summarizes catalytic activities of various CeO_2 -MO_x catalysts containing MO_x of 10 mol%. In the catalytic

Table 1. Effects of various additives on the catalytic performance for 1-propanol conversion over CeO_2 -MO_x at 450 $^{\circ}C$

Additive	Conversion	Selectivity / mol%				
10 mol%	/ %	1	2	3	4	5
Non	22.2	13.5	3.7	54.8	0.4	23.4
Mg	12.7	15.5	1.0	56.2	2.1	20.4
Ca	11.1	20.6	1.5	55.1	2.2	17.9
Sr	13.2	19.3	2.0	55.8	3.2	17.9
Ba	12.9	17.7	2.1	60.5	1.8	16.2
В	7.4	62.4	7.0	16.5	1.2	12.8
Al	12.7	12.5	1.3	51.3	0.8	33.3
Cr	17.2	23.6	6.3	55.3	0.6	10.9
Mn	34.5	13.3	11.2	64.5	0.7	4.7
Fe	47.2	14.5	11.7	61.6	1.2	5.4
Co	42.3	67.7	4.9	20.0	2.6	2.3
Ni	39.7	69.0	2.4	20.8	0.8	4.2
Cu	39.9	60.6	5.7	25.1	3.8	1.8
Zn	29.3	28.0	9.4	47.9	0.8	8.8

tests at 450 °C, every catalyst we examined showed no decay in the catalytic activity with process time. Conversion levels of 1propanol over CeO₂ modified with alkaline earth oxides (M= Mg, Ca, Sr, and Ba) and acidic oxides (M = B and AI) were lower than that of pure CeO₂, while the product distribution was similar to that of pure $\tilde{CeO_2}$. This indicates that the addition of the oxides into CeO2 decreases the catalytic activity of pure CeO₂ because it dilutes the surface Ce concentration in the solid solution. Although the conversion levels over CeO₂ modified with transition metal oxides (M = Co, Ni, Cu, and Zn) were higher than that of pure CeO₂, selectivities to 3-pentanone were lower than that of pure CeO_2 . Over the catalysts, propanal is not dimerized, whereas 1-propanol is readily dehydrogenated to propanal. In contrast, not only 1-propanol conversions but also 3-pentanone selectivities of CeO₂-Fe₂O₃ and CeO₂-Mn₂O₃ catalysts were higher than those of pure CeO₂. The gaseous hydrocarbons such as methane, ethane, ethene, propane and propene were observed in the reaction effluent (Table 1): ca. 50% of them was propane in case of CeO₂-Fe₂O₂. In addition, propyl propionate was detected as another by-product.

TPD experiments of adsorbed CO_2 and NH_3 have revealed that the CeO_2 has only weak basic sites without acidic sites.³ In the present system, it was ascertained that the addition of Fe_2O_3 into CeO_2 did not change the basic strength (profiles not shown). Although it is known that aldol condensation is usual-

Chemistry Letters 2000

ly catalyzed by strong base,⁵ the modification of CeO₂ with alkaline earth oxides with strong basic sites³ has little effect on the product distribution (Table 1). Because strong basic sites are not always effective for aldol addition at a temperature as high as 450 °C, weak basic sites of CeO₂ efficient for the dimerization process of propanal. It is speculated that the surface property of CeO₂ is suitable for the redox processes such as the dehydrogenation of 1-propanol to propanal and the decomposition of 3-hydroxy-2-metylpentanal to 3-pentanone.⁴ Gaseous products like CO and CO₂ were also observed in the reaction: the major was CO₂ over the CeO₂-Fe₂O₃. Thus, the decomposition of 3-hydroxy-2-metylpentanal into 3-pentanone probably proceeds via oxidative-decarboxylation⁶ rather than via deformylation.⁴ It is reported that lanthanoide oxides, except for CeO₂, catalyze both the aldol addition of propanal and the following oxidative-decarboxylation into 3-pentanone under H₂ flow conditions,⁶ whereas the present CeO₂ system is deactivated in H_2 flow. It is speculated that oxygen atom, which may be produced by decomposion of 1-propanol into propane, can be supplied for the oxidative-decarboxylation. In addition, neither propanoic acid as an oxidation product nor unsaturated aldehyde such as 2-metylpent-2-enal produced by dehydration of 3-hydorxy-2-methylpentanal was observed in the reaction.

In XRD patterns of CeO_2 -Fe₂O₃ samples (profiles not shown), only peaks of fluorite-type structure of CeO_2 were observed up to the Fe content of 50 mol%, whereas the structure of pure Fe₂O₃ (100 mol%) was α -Fe₂O₃. This means that the CeO₂-Fe₂O₃ catalysts consist of solid solution. The dehydrogenation of 1-propanol to propanal was accelerated over the CeO₂ modified with transition metal oxides (Table 1). In particular, the addition of Fe and Mn enhanced the activity of pure CeO₂ for the dehydrogenation and the decomposition of 3-hydroxy-2-metylpentanal into 3-pentanone without losing the ability for aldol addition of CeO₂. However, it is not clear whether Fe and Mn themselves in the CeO₂-MO_x solid solution act as active sites for both the dehydrogenation of 1-propanol and the decomposition of 3-hydroxy-2-metylpentanal or not.

Table2. Catalytic properties of CeO_2 -Fe ₂ O ₃ at 450 $^{\circ}$	
--	--

indicate Cata	nytie propert		20300	
Fe content	Conv. ^a	Selc. ^b	SA°	$TOF^{d} \times 10^{4}$
/ mol%	/ %	/ %	$/ m^2 g^{-1}$	/ mol h ⁻¹ m ⁻²
Non	22.2	54.8	41	4.6
5	33.1	60.2	24	13
10	47.2	61.6	25	18
20	52.7	67.9	31	18
30	51.0	66.6	46	11
40	36.5	64.3	28	13
50	26.7	61.3	19	13
100	6.2	2.6	8.0	0.3

^a Conversion of 1-propanol. ^b Selectivity to 3-pentanone. ^c Specific surface area. ^d Space time yield of 3-pentanone per unit surface area.

For the most active CeO_2 - Fe_2O_3 , variations in the conversion and selectivity were examined with different Fe content (Table 2). The 1-propanol conversion together with the 3-pentanone selectivity was maximized at Fe content of 20 mol%. The higher the 1-propanol conversion is, the higher selectivity to 3-pentanone formation is provided. Although the 1-propanol conversion steeply decreased with process time over pure Fe_2O_3 , no degradation in the conversion was observed over the

CeO₂-Fe₂O₃ (20 mol%) catalysts even after 48 h.

Table 2 also summarizes the specific surface area and turnover frequency (TOF) value defined as a space time yield of 3-pentanone based on unit surface area. Although the specific surface area varied with Fe content, the variation was not correlated to the 1-propanol conversion. The TOF value was maximized at Fe content around 10-20 mol%, while the specific surface area was maximized at Fe content of 30 mol%.

Table 3 summarizes the catalytic results of other alcohols

 Table 3.
 Conversion of various alcohols and selectivity to the corresponding symmetric ketones over several catalysts

catalysts	CeO ₂		CeO_2 -Fe ₂ O ₃ ^a		Zr	ZrO ₂ ^b	
reactant	C.°	S . ^d	C.°	S. ^d	C.°	S . ^d	
1-propanol	22	55	53	68	25	16	
1-butanol	21	46	58	63	24	10	
1-pentanol	23	60	48	65	19	13	
1-hexanol	23	55	53	66	30	51	
2-metylpropanol	8	12	17	5	20	17	
2-phenylethanol	99	0.1	94	12	89	7	
phenylmethanol	44	0	42	0	28	0	

Liquid reactant of 1.62 cm³h⁻¹ was fed over the catalyst of 0.15 g at 450 $^{\circ}$ C. ^aCeO₂-Fe₂O₃ (20mol%) catalyst. ^bSpecific surface area of 44 m²g⁻¹, prepared by precipitation using zirconylnitrate and NH₃ solution. ^cConversion of alcohol (%). ^dSelectivity to symmetric ketone (mol%).

over CeO₂-Fe₂O₂ (20 mol%) at 450 °C. As has been examined in 1-propanol, several primary alcohols with straight chain provided the corresponding symmetric ketones. However, in a branched alcohol such as 2-methylpropanol, the conversion of alcohol and the selectivity to symmetric ketone were lower than those in the straight-chain alcohols. 2-Phenylethanol also provides a symmetric ketone, 1,3-diphenylacetone, with poor yield, whereas no symmetric ketone was observed in phenylmethanol which has no α -hydrogen. This surely indicates that this reaction proceeds via aldol addition. The CeO₂-Fe₂O₃ (20 mol%) provides yields of symmetric ketones higher than those of pure CeO₂ and pure ZrO₂, which has been used for a commercial production of 2,4-dimetyl-3-pentanone from 2-methyl-1-propanol.⁷ The reaction rate of 3-pentanone formation over the CeO_2 -Fe₂O₃ is roughly 10 times as high as that of pure ZrO₂.

In conclusion, catalytic activity of $\text{CeO}_2\text{-}\text{Fe}_2\text{O}_3$ for the 3pentanone formation from 1-propanol was found to be the highest among the other $\text{CeO}_2\text{-}\text{MO}_x$, and the highest space time yield of 3-pentanone was obtained at Fe content of 20 mol%. Both weak basic sites and redox property are needed to catalyze the stepwise reaction for the formation of symmetric ketone such as 3-pentanone.

References and Notes

- 1 C. Li, K. Domen, K. Maruya, and T. Onishi, J. Catal., 141, 540 (1993).
- 2 S. Sato, K. Koizumi, and F. Nozaki, *Appl. Catal. A*, **133**, L7 (1995).
- 3 S. Sato, K. Koizumi, and F. Nozaki, J. Catal., 178, 264 (1998).
- 4 S. Sato, R. Takahashi, T. Sodesawa, K. Matsumoto, and Y. Kamimura, J. Catal., 184, 180 (1999).
- 5 T. Matsuda, Y. Sasaki, H. Miura, and K. Sugiyama, *Bull. Chem. Soc. Jpn.*, **58**, 1041 (1985).
- 6 J. B. Claridge, M. L. H. Green, S. C. Tsang, and A. P. E. York, *J. Chem. Soc., Faraday Trans.*, **89**, 1089 (1993).
- 7 K. Tanabe, and T. Yamaguchi, Catal. Today, 20, 185 (1994).